
1 March 13, 1998

The Package-Based Development Process
in the Flight Dynamics Division

Amalia Parra, Computer Sciences Corporation
Carolyn Seaman, University of Maryland

Victor Basili, University of Maryland
Stephen Kraft, NASA/Goddard Space Flight Center

Steven Condon, Computer Sciences Corporation
 Steven Burke, Computer Sciences Corporation

Daniil Yakimovich, University of Maryland

Abstract
The SEL has been operating for more than two decades in the FDD and has adapted to
the constant movement of the software development environment. The SEL’s
Improvement Paradigm shows that process improvement is an iterative process.
Understanding, Assessing and Packaging are the three steps that are followed in this
cyclical paradigm. As the improvement process cycles back to the first step, after having
packaged some experience, the level of understanding will be greater. In the past,
products resulting from the packaging step have been large process documents,
guidebooks, and training programs. As the technical world moves toward more
modularized software, we have made a move toward more modularized software
development process documentation, as such the products of the packaging step are
becoming smaller and more frequent. In this manner, the QIP takes on a more spiral
approach rather than a waterfall.

This paper describes the state of the FDD in the area of software development processes,
as revealed through the understanding and assessing activities conducted by the COTS
study team. The insights presented include: (1) a characterization of a typical FDD COTS
intensive software development life-cycle process, (2) lessons learned through the COTS
study interviews, and (3) a description of changes in the SEL due to the changing and
accelerating nature of software development in the FDD.

1 Background
The Flight Dynamics Division at NASA/Goddard Space Flight Center has had a history of
effective reuse of software to levels as high as 90%. The increase has been affected by the
use of Ada and object-oriented technologies. This experience led to the creation and use
of an architectured component library for a certain class of systems so that these systems
could be “configured” rather than developed [Condon et al., 1996]. It has also motivated
the outsourcing of software development for more “standard” systems, which in turn has
led to a move from internal reuse to the use of external software packages. The
introduction of package-based software development—rapid configuration of software
systems based on Commercial-Off-The-Shelf (COTS) packages, Government-Off-The-
Shelf (GOTS) packages, and some custom-built reusable packages—has motivated the

2 March 13, 1998

Software Engineering Laboratory (SEL) to provide guidance in this new era by updating
the SEL Recommended Approach to Software Development [SEL, 1992]. Before
updating this important SEL guidebook, however, it was first necessary to understand and
improve this new package-based process within the flight dynamics domain.

The traditional SEL approach to software improvement involves three steps. These are
described in more detail in Section 2, but briefly they are as follows: (1) understand the
current situation in the local environment (for us, the FDD) and develop appropriate goals
for improving specific items; (2) assess how to achieve these goals by defining process
changes, testing them on one or more projects, and analyzing the results of this
experiment; (3) package the lessons learned from step 2 and integrate these into the local
software development process. In any given SEL experiment, this 3-step improvement
process is generally a cyclic one, involving several iterations. In addition the steps can
overlap somewhat.

The first phase of the SEL COTS study was conducted during the last few months
of 1995. Because the FDD had limited experience developing COTS-based systems
at that time, the SEL looked at experiences of outside organizations in order to
understand the challenges associated with this type of development and to gather
best practices used on COTS-based projects. Using a solid understanding of the
FDD project domain, history and environment, the SEL synthesized this
information into a strawman process to be used to produce COTS-based systems in
the FDD. This initial strawman process was then reviewed for feasibility by key
FDD software engineers (both civil servant and contractor) who have had some
experience with COTS. The resulting strawman process, presented in the
Packaged-Based System Development Process [Waligora, 1996], is available on
the SEL’s Web page, http://fdd.gsfc.nasa.gov/selres.html.

As more FDD projects began using COTS to construct their software systems, the
next phase of the SEL COTS study began. The goals of this phase, which is the
subject of the rest of this paper, include gathering a current understanding of
COTS-based project, suggesting areas of improvement for further study, and
providing guidance to current and future COTS-based projects.

In section 2, we present some of the terminology used in the rest of the paper.
Section 3 describes the approach we used in the study, and section 4 describes the
COTS-based software development process that emerged from the data we
collected, as well as some insights into that process. Section 5 describes some of
the steps that the SEL has taken to keep up with the pace of change, in particular in
packaging the results of the COTS study in a timely and relevant manner. Section 6
describes some of the future plans for this line of investigation.

3 March 13, 1998

2 Terminology
The words “Commercial-Off-The-Shelf” are very generic; they can be used to in reference
to many different types and levels of software, e.g. software that fills a specific
functionality or a tool used to generate code. In this paper the term COTS implies a
COTS product that has specific functionality as part of a system — not merely a tool, but
a piece of ‘pre-built’ software that is integrated into the system and
must be delivered with the system to provide operational functionality or sustain
maintenance efforts.

The term COTS project refers to a project that integrates COTS packages and other
software to develop a system. This is not to be confused with the development of COTS
packages that occurs at the ‘vendor’ corporation.

Additionally, the term GOTS is equivalent to COTS in this study because the process
followed is for the most part identical to developing a system with COTS.

3 Experimental Approach
The Improvement Paradigm, shown in Figure 1, is a SEL tool for process improvement
and is commonly used to plan SEL studies. The SEL COTS study team used this concept
to guide its work. The paradigm is a three step, iterative process. The basic step is
understanding, which identifies the current status of some aspect of software development
in the SEL. The next step is assessing, which determines potential improvements. The
main activities of the COTS study team are primarily focused on this assessing step.
Packaging is the top step, in which improvements are documented and integrated into the
environment to form the basis for the next level of understanding.

E
X

A
M

P
L

E
S

TIME

UNDERSTANDING

ASSESSING

PACKAGING
Make improvements part of your business

 • Update standards
 • Refine training

• Tailor process

Determine effective improvements

• Will formal inspections minimize rework?
 • Will OOT lead to higher reuse?
 • Will a different testing technique reduce costs?

Know your software business

 • What are our software characteristics?
 • What process do we use?
 • What are our goals?

Iterate

Goals

Figure 1. The Improvement Paradigm

4 March 13, 1998

The initial understanding step for the COTS study was a series of interviews with
representatives from 12 COTS projects. Based on the interview data, we then described
the COTS-based development in the FDD, presented in section 4.1. Also based on
interview data, we redesigned the way development effort data is collected in the FDD.
These two activities made up our assessing step. These results were packaged, in the
packaging step, through updated data collection forms (described in section 5.2) and study
briefs (described in section 5.3). The next level of understanding, then, is provided by the
baseline process description and data from the new effort forms.

4 COTS-based Software Development Process
As a first step in understanding where COTS-based development in the FDD stood, the
study team analyzed the current data collection. Historically the SEL collects effort data.
For typical pre-COTS era projects the SEL has a baseline of effort divided into four
simple categories of activities. The SEL anticipated need for data specific to COTS
projects, made an attempt to gather data on this effort, but the level of detail was too
general to allow understanding of the COTS-related effort. One indication that the SEL
was not capturing useful data is the large amount of effort that fell into the “other”
category.

Clearly, the quantitative information available was not sufficient for us to identify and
understand the new issues that were arising in relation to the use of COTS packages in
FDD projects. In order to gather more and richer information on this topic, the study
team designed and conducted structured interviews, using three levels of interview guides
at increasing levels of detail, with representatives from 12 projects. Topics covered
included the process steps carried out, what problems were encountered with the use of
COTS in development, and how the incorporation of COTS has changed the software
development process.

4.1 Process Description
Our interviews uncovered the new process flow, shown in Figure 2. The study team
discovered more complexity in the current practice than expected in theory. For example,
we had expected vendor interaction to be simple, and to end with the purchase of a
product. In reality, the interaction continues throughout the life cycle and the flow of
information is not merely one way. Surprisingly, we found a strong dependence on bi-
directional information flow. Also shown is a more constant involvement with separate
organizations, such as other projects that also use COTS, independent evaluation teams,
and other customers of the vendor. Portions of the COTS-based systems include
traditional developed software. So an issue to consider is how to fit together our
traditional process, as documented in the SEL Recommend Approach to Software
Development, and our new way of doing business by integrating COTS packages to build
a system.

The software development teams interviewed included both FDD and CSC personnel.
Although not every team followed all of the steps outlined below, a composite process
flow emerged from the interview data. Note: None of the project teams interviewed had

5 March 13, 1998

begun sustaining engineering. This step will be evaluated in future studies. The steps in
the overall process, as shown in Figure 2, are as follows:

〈 Requirements Analysis
〈 Package Identification, Evaluation and Selection
〈 Non-COTS Development
〈 Glueware Requirements and Development
〈 System Integration and Test
〈 Target System Installation and Acceptance Test
〈 Discrepancy Resolution
〈 Sustaining Engineering

 Figure 2. Process Flow for COTS Projects

 The earliest steps in COTS-based development are similar to traditional development -
requirements gathering. In the requirements phase a strong emphasis is on gathering
external information. Much of this information comes from separate organizations,
particularly the product vendor, in the form of documented functionalities. Some project
requirements are predefined, with minimal requirements analysis needed. Early reviews of
the requirements are crucial even with a less formal process.

 Following requirements analysis are the new and concurrent steps of package
identification, evaluation, and selection. These are new activities, requiring new technical
skills and new administrative duties, especially in the area of procurement.

 Package identification consists of Web searches, product literature surveys and reviews,
other system component reuse, and recommendations from external sources. Product

Vendor

Target System
Installation
and Acceptance
Test

Discrepancy
Report (DR)
Process

Sustaining
Engineering

Non-COTS
Development

Requirements
Analysis

External
Infomation

 System
Architecture

System
Requirements
Review
(SRR)

Information flow - bidirectional

Process flow

KEY

hard requirements

process

traditional waterfall development

separate entity

process check or review

Package
Identification/
Evaluaton/
Selection

Identify
Glueware
and Integration
Requirements

System
Design
Review
(SDR)

Write
Glueware
and
Interfaces

Integration
and Test

6 March 13, 1998

information is kept in a central justification notebook, or an evaluation notebook. Not
only are product evaluation notes kept, but subjective comments concerning the vendor
quality and responsiveness are kept, too.

 As packages are identified, the evaluation and selection processes begin. Package
evaluation steps mentioned in the interviews consisted of prototyping, vendor
demonstrations, and in-depth review of literature such as manuals and user guides.
Glueware and interfaces as dictated by the system architecture, operating system and
hardware are identified. Vendor training, sites, and availability, are considered.
Procurement issues surface such as development fees for added requirements, licensing
and maintenance fees and sustaining engineering support.

 The selection step sometimes uses a weighted average. To do this, vendor capabilities are
listed and mapped to the system requirements. With team agreement, weights of
importance are assigned to each requirement. Then each team member votes. Team
members are polled and the votes tallied. Discussion ensues and a choice is made. In
cases where the vendor will code additional functionality, the vendor is notified of the
decision. In the case of one team, when the vendor was told they were selected, the
vendor announced a hidden cost. Negotiations ended altogether, and the second choice
vendor and package were used.

 In both of these first two process stages, we found that some projects relied on the COTS
Evaluation Team, which is chartered by the parent organization to survey the marketplace
and evaluate vendor packages that fall within the domain expertise of the mission team's
organization. The evaluation team then reports its findings and offers this knowledge to
the project teams. The project team is ultimately responsible for deciding what package to
select and integrate. The evaluation team can be important when delivery time is driving
the project - time the development team doesn’t have for product evaluations.

 Most projects studied have an element of traditional development that does not depend on
COTS or other packages. This development begins in parallel with the early COTS-
related steps, as a traditional development project. Non-COTS cost and schedule are
monitored. There is a bi-directional information flow between the COTS-based process
flow and the non-COTS development that comes into play in the design review. Only
some teams held a formal System Design Review (SDR), but all teams mentioned some
mechanism to apprise the customer of the design.

 After the design review, whether it is formal or informal, traditional non-COTS
development continues in parallel with the coding of the glueware and the interfaces.
Close contact with the vendor technical staff, or a competent Help Desk is essential during
this development.

 The integration step varies a great deal from project to project, depending on which and
how many COTS products are being used. At system integration and testing the COTS
packages are treated as black-boxes. The teams commented that testing focused on the

7 March 13, 1998

interface glueware and the input file format. Again, the importance of the vendor
technical staff or Help Desk availability was emphasized. Testing is conducted on each
software component as the components are integrated, piece-by-piece.

 Unlike the traditional life-cycle, no formal acceptance testing or operational readiness
reviews were mentioned by the teams. The development team installs the software on the
target system. Once installed, navigational training to familiarize the customer with the
system is conducted. During this phase, a member of the development team is the single
point-of-contact or intermediary between the customer and the vendor. This person is
responsible for reporting discrepancies, and handling software “patches” or corrections.
Interviewees mentioned that software patches were placed on vendor Web sites that were
downloaded to the target system.

 The end of the configuration process is marked by the sustaining engineering effort. To
date no team that the study team interviewed had reached the sustaining engineering stage.

4.2 Lessons Learned & Experience Gained
 The developers interviewed were also asked to describe the major differences between
COTS-based development and traditional development, and the advantages and
drawbacks. Some mentioned the obvious difference, i.e. that there is now a whole lot of
software that doesn’t need to be implemented. It’s no longer the task of building a big
system, but of using already-built pieces. But there were other less obvious differences.
Some of those differences mentioned were:

〈 different design phases
〈 looser process requirements
〈 new or greatly increased need for vendor interaction
〈 procurement skills now needed
〈 new or greatly increased need for product evaluations
〈 no unit test or inspections of packaged software

 Advantages of COTS-based development that were mentioned included*:

〈 more flexible requirements
〈 less process overhead
〈 less code to write
〈 less debugging
〈 shorter cycle time
〈 better adherence to schedule.
〈 serendipitously useful functionality in COTS packages

* Note: “Shorter cycle time” and “less process overhead” may be due to the pressure to do things faster as
much as due to the adoption of COTS.

8 March 13, 1998

Many of the disadvantages mentioned had to do with dealing with the vendor, including
the risks of less than full knowledge beforehand, dependence on the vendor, and vendor
negotiations. Another disadvantage, which some people listed as an advantage, is the
relative looseness of the process in package-based projects. Some people thought that
more rigor was needed.

5 Packaging the Approach

FDD projects have moved rapidly from a reuse-based development process to a COTS-
based system development process. The SEL needed to react quickly with new
mechanisms to adapt to these and other changes in the environment. The changes that the
SEL has undergone are important to study because the nature of software development is
changing and will require further changes in the research methods of the SEL and other
organizations. As we encounter new problems, we need new ways to address these issues.

We will address the natural adaptation of the SEL that is taking place; the learning,
refitting and adjusting of the SEL learning procedures in order to keep pace with the new
organization and environment. Three major innovations in standard procedures will be
discussed :

1) The use of qualitative analysis, mostly in the form of structured interviews and
analysis of data gathered from those interviews.

2) Changes to the database in terms of what is being collected and analyzed in
order to keep track of the changing business in FDD.

3) The generation of Study Briefs, which are short, quickly disseminated
communications on a variety of topics—lessons learned, early analysis results,
definitions of new terms, etc.—to keep information flowing between the EF
and the project organization in a timely manner.

The use of qualitative analysis was necessitated by the COTS study. The study team
found that with this change in technology, the quantitative data that the SEL collects does
not tell the entire story of what is occurring on projects. During the course of these
interviews the SEL team members interacted with the technical personnel. These
interactions led the SEL to realize the need for more effective, frequent communication:
(1) communication from the SEL to the project organization about what the SEL was
learning, and (2) feedback from the project organization to the SEL to corroborate and
refine the SEL’s evolving models. This realization became the catalyst for the SEL Study
Briefs. Interviews specific to the COTS study also showed that the data collected for
COTS was insufficient. This sparked the modification to the Weekly Effort Form to
include COTS specific details. The transition to this new form has been simple due to the
new re-engineered SEL database, that has been revolutionized using COTS products and
transitioned to a workstation platform. This allows us to use the database as a repository
for information on the COTS products used as well as the effort involved in putting
together a COTS based system.

9 March 13, 1998

5.1 Interviews and Qualitative Data
Empirical studies in software engineering, like the ones that the SEL has engaged in for
two decades, have traditionally relied on standard quantitative methods in order to
characterize some aspect of a software development process. In some cases, several
quantitative studies of various sizes and scopes have been conducted to address one
general issue, e.g. Cleanroom software development [Selby et al., 1987]. Approaching a
problem from several angles in this way yields a more complete description of a particular
process or of the effect of a particular technology. This approach has helped the SEL and
other organizations learn a great deal about their software business. In recent years,
however, software projects in the SEL environment have become both more complex and
faster-paced, as is true in much of the software industry. This has motivated the SEL to
find ways to provide richer answers to more complex problems in less time.

One approach to achieving this is to use different research methods than the SEL is
accustomed to using, in particular qualitative methods. Qualitative data is information in
the form of words and pictures, as opposed to quantitative data, which is in the form of
numbers. Qualitative analysis is simply the examination and analysis of qualitative data in
order to form conclusions and hypotheses. Qualitative data is by definition richer and
carries more information than quantitative data. On the other hand, it is more complex
and harder to analyze. Qualitative analysis methods have been designed to deal with this
complexity [Glaser and Strauss, 1967]. Combinations of qualitative and quantitative
methods are especially useful because the two types of methods tend to deal with the
complexity of the subject in complementary ways.

The COTS study is one of the first SEL studies to use qualitative data to a large extent.
The qualitative data used in this study comes from extensive interviews with software
developers and managers. Using this data has allowed an in-depth examination of COTS-
based development that incorporates a variety of perspectives in one study. For example,
data was collected on the problems encountered during COTS-based development, the
different steps involved, the parts of the process which are effort-intensive, and the roles
that must be filled to carry out this type of development. Much of this information would
be very difficult to collect quantitatively, and would have required multiple studies, each
measuring various attributes in different ways.

The drawbacks to doing qualitative study is that it doesn’t provide “hard” results in terms
of easy-to-use mathematical models (e.g. regression models) or easy-to-summarize
relationships between variables (e.g. correlations). Instead, qualitative results are more
complex, “messier”, to reflect the complexity of the problem being described.

Qualitative data, mostly from interviews, is also being used to some extent on other
ongoing SEL studies. In combination with other quantitative methods, we believe the use
of qualitative analysis in current and future studies will help the SEL provide the
development community with more useful, in-depth, and realistic explanations of software
development phenomena.

10 March 13, 1998

5.2 New Data Forms - Quantitative Data
In response to a need for more COTS related data, the SEL realized an opportunity to
update the types of data that are maintained in the SEL database. This was accomplished
by the modification of an existing form, the Weekly Effort Form, and the addition of a new
form, the COTS & Tools Information Form.

5.2.1 Weekly Effort Form
As the interview data was leading us to define the COTS-based development process, the
study team saw that there were new activities that projects were conducting. These
include:

COTS/GOTS Evaluation
COTS/GOTS evaluation activities included identifying packages, collecting information,
attending demos, evaluating and selecting COTS/GOTS packages.

COTS/GOTS Integration
This included integrating COTS/GOTS, possibly with other software components, to
produce individual applications or subsystems. This also included the writing and
debugging of glueware.

COTS Package Familiarization
Package familiarization is spending time to learn to use a COTS package, not including
formal training, which would be included under other effort categories, nor package
familiarization for the purposes of evaluation.

Configuration Management
Configuration management had not previously been a separate category.

Procurement
This included procuring and purchasing packages, interacting with the vendor regarding
licensing and maintenance agreements, etc.

These new activities were merged into the Weekly Effort Form (WEF), the existing SEL
form for collecting effort data from the technical personnel. This merger created a WEF
modified for COTS that was then used on a trial basis by two projects. (See Appendix A
for the original WEF and Appendix B for the experimental COTS WEF.) After
experimental use of this COTS WEF, and a few resulting updates, the SEL decided to
implement the updated WEF across the organization. This was accomplished through full
consultation with FDD technical personnel. The resulting WEF was put into place
November 1997 across the organization (see Appendix C).

The graph shown in Figure 3 indicates the type of data collected by the experimental
COTS WEF, the WEF which was introduced in October 1995 (and which had only a
single COTS activity category), and the even earlier SEL weekly effort form which was in
use prior to October 1995. The leftmost bar shows the typical distribution of effort on

11 March 13, 1998

completed FDD projects prior to October 1995. The major activities are design, code,
test, and administrative; none deal with COTS.

0%

20%

40%

60%

80%

100%

Baseline COTS Project
old Forms

COTS Project
new Forms

P
er

ce
n

t
o

f
T

o
ta

l H
o

u
rs

Administrative
(non-COTS)
Administrative
(COTS)

Test

Code (non-COTS)

Code (COTS)

Predesign

Design (COTS)

Design (non-COTS)

Technical Other
(non-COTS)
Technical Other
COTS)

Figure 3. COTS Data From Projects

The middle bar shows the effort distribution for a nearly complete FDD project that was
developing during the era of the WEF that was introduced in October 1995 and which
involved some COTS integration. This WEF introduced a predesign category. It also
introduced a single COTS activity and a so-called technical other category. Note that this
bar shows a great increase in the proportion of project effort spent in the administrative
activity. Various hypotheses were examined to explain this change, but none proved
conclusive.

The rightmost bar shows the distribution of effort for a FDD project that involved a fair
amount of COTS integration but which was only partially complete. This project began
using the experimental COTS WEF soon after the project began. Only about twelve
weeks of this project’s effort data were available for analysis for this paper. The data in
this bar is thus insufficient to draw any conclusions on the distribution of effort on a
typical FDD project, yet alone a project in another environment. Data on several
complete projects would be required before the typical FDD effort distribution on a COTS
project could be determined.

Future studies are underway to determine this and to address more specific issues. These
are described in Section 6.

12 March 13, 1998

5.2.2 COTS & Tools Information Form
In order to collect context data about the COTS packages used on projects, the SEL
developed the COTS & Tools Information Form (CTIF), shown in Appendix D. The need
for the CTIF became evident during the interview process. We were collecting qualitative
data, such as which COTS packages are used, what support is provided by the vendor,
and whether it is embedded into the system or merely a tool. Rather than maintaining all
this information in the interview notes, we developed the CTIF to collect data that would
be stored, and readily accessible, in the SEL database. Using the CTIF to collect this
context data allows us to characterize the COTS products in order to better compare
projects that are related either in the type of COTS products used, or in functionality
provided by COTS.

5.3 Study Briefs
The SEL realized a need for compact products. SEL Study Briefs are an example of this
as they concisely document and distribute information that might fall through the cracks.
A Study Brief is less than a process document, yet much more than informal
communications. The modularity of the Study Briefs allows the user community to
incorporate “one page worth of process” into their busy schedules. Study Briefs also
serve as a tool for communication with the inclusion of the technical community in the
feedback loop section. A sample Study Brief is shown in Appendix E.

The format of a SEL Study Brief is shown Table 1.

Study Brief Field Explanation of Field
Study Brief Number number assigned (in order of posting on web)
Issue topic of Study Brief
Purpose goal of Study Brief
Current Understanding body of the Study Brief, may vary in style
Feedback comments received from audience after Study Brief has been

posted to web site
Original Author person or persons originating Study Brief
Responsible Author person responsible for receiving feedback, and possibly modifying

the Study Brief (in most cases same as Original Author)
Contributors others who contributed to the Study Brief
References/Relevant Links materials used in preparation of Study Brief, additional

information on a topic, or hot links to on-line sources
History first published date, any revision dates

Table 1. SEL Study Brief Format

13 March 13, 1998

6 Future Directions
After analysis of the current process and review of the issues that are most relevant to this new
COTS-based development environment, several topics for further study have been identified:

1) The long-range effects of COTS use, in particular the maintenance of systems
which incorporate COTS packages,

2) Modeling and estimating effort, cost, and schedule of COTS projects based on data
collected with the new forms,

3) Risks of COTS use, to be studied with a series of SEL case studies, possibly
including the re-engineered SEL database development, and

4) Methods for measuring the “distance” between a set of requirements for a new
system and the available COTS packages which could be used to satisfy those
requirements.

The selection and implementation of COTS is easier to understand than is the maintaintenance
of a COTS-based system. Such a system will require modifications and enhancements during
its lifetime, and many of these modifications may be prompted by vendor updates to the COTS
packages. Maintenance includes less obvious costs; maintenance agreements and licensing are
more tangible than the effort that will be required to identify the parts of the code that are
affected by a small change elsewhere so that the modification to one area does not cripple the
system. The projects interviewed for the COTS study had not moved into a maintenance
phase. The SEL sees this as an area for further research.

The SEL has a long-standing tradition in the FDD for providing models for the estimation of
effort, cost and schedule. The interviews uncovered a need for new models to support COTS
projects. The SEL has begun efforts to baseline the current situation across the organization.
The next steps toward developing models include collecting a reasonable amount of data from
which to draw quantifiable conclusions.

The interviews identified risk as an important topic. The SEL determined that gathering case
studies of various COTS-based systems with emphasis on the risks expected, as well as the
risks involved, would provide valuable information. It appears likely that many of the risks of
introducing COTS systems are domain-independent. Because of this the SEL’s recently re-
engineered software metrics collection and reporting system would be a good non-FDD system
to examine as a case study of COTS risks. In this re-engineering process, the SEL upgraded
the SEL’s COTS relational database management system and added an additional COTS
product to automate the submission of data to the SEL by users.

In related research, we seek to develop a mechanism to measure the “distance” between the
need for functionalities (the requirements) and the specification of available COTS. Such
“functional distance” measures should help us to predict the amount of glueware necessary to
integrate COTS with the rest of the system. The costs of glueware is one key factor in the
total cost of using COTS software.

Appendix A - Old WEF (Introduced October 1995)

14 March 13, 1998

WEEKLY EFFORT FORM
Use this form to record all hours you worked during the week.

 Name:

 Project:

Date (Friday):

Application or Subsystem (or “N/A” as appropriate.)

Release/Build Number (or “N/A” as appropriate.)

SCR Number (or “N/A” as appropriate)

Hours By Activity (List hours in a separate column for each application, release/build and SCR combination.)
P
R
E

Requirements
Spec. Definition/
Development

Hours spent defining and developing the requirements
specifications

D
Requirements
Analysis

Hours spent understanding requirements specs or
understanding SCRs for enhancements or adaptations

E
S
I

Error Analysis/
Debugging

Hours spent finding a known error in the system; may be
in response to SFR, STR, SCR. (includes generation and
execution of tests associated with finding the error)

G
N

Impact
Analysis/Cost
Benefit Analysis

Hours spent analyzing several alternative
implementations and/or comparing their impact on
schedule, cost, and ease of operation

D
E
S

Design Creation
or Modification

Hours spent developing or changing the system,
subsystem, or component design (includes development
of PDL, design diagrams, meeting materials, etc.)

I
G
N

Design Review/
Inspection

Hours spent reading or reviewing design (includes design
meetings and consultations, as well as formal and
informal reviews, walkthroughs, and inspections)

C
Code Generation/
Modification

Hours spent actually coding system components
(includes both desk and terminal code development)

O
D

Code Review/
Inspection

Hours spent reading code (for any purpose other than
isolation of errors) or inspecting other people’s code

E Unit Testing Hours spent testing individual components of the system
(includes writing test drivers and informal test plans)

T
E
S

System
Integration/
Integration Testing

Hours spent integrating components into the system;
hours spent writing and executing tests that integrate
system components (includes system tests)

T Regression
Testing

Hours spent regression testing the modified system

Independent
Testing Support

Hours spent supporting independent testing, including
training of testers

M
I
S

Prototyping Hours spent prototyping to investigate a particular issue
(not to be confused with other activity hours when the
entire system is a prototype)

C COTS/GOTS Hours spent evaluating, selecting, procuring, integrating
and testing COTS/GOTS products

Documentation Hours spent creating and reviewing deliverable
documents

O
T

Training for Self Hours spent taking courses (including computer-based
training), attending seminars, etc.

H
E

User
Support/Training

Hours spent training users and responding to their
questions

R Management Hours spent managing or coordinating work and reporting
status

Other Other development hours not covered above
Total Total hours per column 0.0 0.0 0.0 0.0
Grand Total Total hours 0.0

Fo r L ibra rian 's Use O nly

N umbe r:

D ate:

E n te red by :

C hecke d by:

Appendix B - Experimental COTS WEF

15 March 13, 1998

Experimental “COTS modified” WEEKLY EFFORT FORM
Use this form to record all hours you worked during the week.

 Name:

 Project:

Date (Friday):

Application or Subsystem (or “N/A” as appropriate.)

Release Number (or “N/A” as appropriate.)

Build Number (or “N/A” as appropriate.)

SCR Number (or “N/A” as appropriate)

Hours By Activity (List hours in a separate column for each application, release/build and SCR combination.)
P
R

Requirement Specs.
Definition/Development

Hours spent defining and developing the requirements specifications

E
D

Requirements Analysis Hours spent understanding requirements specs or understanding SCRs for
enhancements or adaptations

E
S

Error Analysis/
Debugging

Hours spent finding a known error in the system; may be in response to
SFR, STR, SCR.

I
G
N

Impact Analysis/Cost
Benefit Analysis

Hours spent analyzing several alternative implementations and/or
comparing their impact on schedule, cost, and ease of operation

D

COTS/GOTS Evaluation Hours spent in COTS/GOTS evaluation activities, (i.e., identifying
packages, collecting information, attending demos, evaluating & selecting
COTS/GOTS packages)

E
S
I

Design Creation
or Modification

Hours spent developing or changing the system, subsystem, or component
design (includes development of PDL, design diagrams, meeting materials,
etc.)

G
N

Design Review/
Inspection

Hours spent reading or reviewing design (includes design meetings and
consultations, formal and informal reviews, walkthroughs, and inspections)

COTS/GOTS Integration Hours spent integrating COTS/GOTS (& other software components) to
produce individual applications/ subsystems (i.e. writing & debugging
glueware, COTS package familiarization)

C
O

Code Generation/
Modification

Hours spent actually coding system components (includes both desk and
terminal code development)

D
E

Code Review/ Inspection Hours spent reading code (for any purpose other than isolation of errors) or
inspecting other people’s code

Unit Testing Hours spent testing individual components of the system (includes writing
test drivers and informal test plans)

T
E

System Integration/
Integration Testing

Hours spent integrating components into the system; hours spent writing
and executing tests that integrate system components (includes systest)

S Regression Testing Hours spent regression testing the modified system
T Indep. Testing Support Hours spent supporting independent testing, including training of testers

M
I

Procurement Hours spent procuring/purchasing, interacting with vendor regarding
licensing/maintenance agreements etc.

S
C

Prototyping Hours spent Prototyping to investigate a particular issue

O Documentation Hours spent creating & reviewing deliverable documents
T
H

Training for Self Hours spent taking courses (including computer-based training), attending
seminars, etc.

E User Support/Training Hours spent training users and responding to their questions
R Configuration Mgmt. Hours spent in configuration management

Management Hours spent managing or coordinating work and reporting status
COTS/GOTS Other Other COTS/GOTS specific hours not covered above
Other Other development hours not covered above
Total Total hours per column 0.0 0.0 0.0 0.0
Grand Total Total hours 0.0

Fo r L ibra rian 's Use O nly

N umbe r:

D ate:

E n te red by :

C hecke d by:

Appendix C - New WEF (Introduced November 1997)

16 March 13, 1998

WEEKLY EFFORT FORM
Use this form to record all hours you worked during the week.

Name:

Project:

Date (Friday):

Application or Subsystem (or “N/A” as appropriate.)

Release Number (or “N/A” as appropriate.)

Build Number (or “N/A” as appropriate.)

SCR Number (or “N/A” as appropriate.)

Hours By Activity (List hours in a separate column for each application, release/build and SCR combination.)
P
R

Requirement Specs.
Definition/ Development

Hours spent defining and developing the requirements specifications

E
D

Requirements Analysis Hours spent understanding requirements specs or understanding SCRs
for enhancements or adaptations

E
S
I

Error Analysis/
Debugging

Hours spent finding a known error in the system; may be in response to
SFR, STR, SCR (includes generation and execution of tests associated
with finding the error)

G
N

Impact Analysis/
Cost Benefit Analysis

Hours spent analyzing several alternative implementations and/or
comparing their impact on schedule, cost, and ease of operation

D
E

COTS/GOTS Evaluation Hours spent in COTS/GOTS evaluation activities (i.e., identifying
packages, collecting information, attending demos, evaluating and
selecting COTS/GOTS packages)

S
I

Design Creation or
Modification

Hours spent developing or changing the system, subsystem, or component
design (includes PDL, design diagrams, meeting materials)

G
N

Design Review/
Inspection

Hours spent reading or reviewing design (includes design meetings and
consultations, formal and informal reviews, walkthroughs, and inspec.)

C

COTS/GOTS Integration Hours spent integrating COTS/GOTS (may be with other software
components) to produce individual applications/ subsystems (i.e., writing
and debugging glueware)

O Code Generation/ Modif. Hours spent actually coding system components (desk & terminal dev.)
D
E

Code Review/ Inspection Hours spent reading code (for any purpose other than isolation of errors) or
inspecting other people’s code

Unit Testing Hours spent testing individual components of the system (includes writing
test drivers and informal test plans)

T
E

System Integration/
Integration Testing

Hours spent integrating components into the system or writing and
executing tests that integrate system components (includes sys-test)

S Regression Testing Hours spent regression testing the modified system
T Indep. Testing Support Hours spent supporting independent testing, including training of testers

COTS Package
Familiarization

Hours spent learning to use a COTS package (not formal training, which
would be listed under training for self; also does not include evaluation)

Prototyping Hours spent prototyping to investigate a particular issue
O
T

Training for Self Hours spent taking courses (including computer-based training), attending
seminars, etc.

H User Support/Training Hours spent training users and responding to their questions
E CM Hours spent in configuration management
R Procurement Hours spent procuring/purchasing, interacting with vendor regarding

licensing/maintenance agreements, etc.

Documentation Hours spent creating and reviewing deliverable documents
Management Hours spent managing or coordinating work and reporting status
COTS/GOTS Other Other COTS/GOTS specific hours not covered above
Other Other hours not covered above (i.e., department and all-hands mtgs)
Total Total hours per column 0.0 0.0 0.0 0.0
Grand Total Total hours 0.0

Fo r L ibra rian 's Use O nly

N umbe r:

D ate:

E n te red by :

C hecke d by:

Appendix D - CTIF

17 March 13, 1998

COTS & TOOLS INFORMATION FORM (CTIF)
Use this form to obtain context and evaluation data, verify at project completion.

For each COTS product or Tool, use a separate CTIF.

Name: Date:

Project:

COTS Product or Tool: Version Number: Vendor:

1. Reasons for using tool or COTS: Check all that apply.

 requirements definition requirements analysis requirements tracking/traceability design

 simulation/modeling code generation static analysis compilation debugging

 configuration management integration QA re-engineering testing

 reverse engineering change management project tracking documentation

 training information management reuse management measurement risk

analysis communication project planning/estimation application functionality

2. Support provided for tool or COTS: Check all that apply.

 demos informal or partial documentation full documentation courses help desk

3. Activities supported by tool or COTS: Check all that apply.

 requirements definition requirements analysis design coding testing

 documentation CM QA management other

4. Usage frequency of tool or COTS: (Select one from choices below, enter letter of selected item here.)

a. no usage b. used once or twice c. monthly d. weekly e. daily

5. Functionality of tool or COTS: (Select one from choices below, enter letter of selected item here.)

a. no data available b. abandoned, due to lack of functionality c. major expected functions missing

d. some expected functions missing e. most expected functions present f. all expected functions present

6. Usefulness of tool or COTS: (Select one from choices below, enter letter of selected item here.)

a. no data available b. abandoned, due to problems c. many problems encountered

d. some problems encountered e. few problems encountered f. no problems encountered

7. Impact of tool or COTS on project’s success: (Select one from choices below, enter letter of selected item here.)

a. impossible to estimate b. major negative impact c. some negative impact overall

d. positive & negative impacts balance out e. some positive impact f. major positive

impact

8. Is COTS or tool embedded in software, i.e., is COTS being delivered as part of the system? YES NO

For L ibrarian's Use Only

Number:

Date:

Ente red by:

Checked by:

18 March 13, 1998

Appendix E - Sample SEL Study Brief

Study Brief Number: 7

ISSUE: COTS Evaluation Team

PURPOSE: Document the SEL’s understanding of the COTS Evaluation Team, for the purpose of
disseminating information to the FDF community and clarification for the SEL, in regards to the COTS Study.

CURRENT UNDERSTANDING:

Team was formed in 1995 to address a move towards COTS solutions in FDD. Originally, part of Code 551, Flight
Mechanics. Currently, part of the Code 550 Flight Dynamics Technical Support Office (TSO).

Who is the Evaluation Team?
〈 Composed of problem domain experts and mission team members, Led by Sue Hoge, GSFC analyst
〈 Matrixed on a as needed basis, not dedicated full-time to evaluations

What are they doing?
〈 Evaluate COTS for Flight Dynamics Mission Planning & Orbit Determination
〈 Provide evaluation services to mission teams, as requested
〈 Provide independent software evaluations
〈 Monitor new COTS products, as available/maintain data on products that meet specific domain needs
〈 Publish Evaluation Reports
〈 Update the Guidelines for Evaluating COTS at the FDF document, as needed

What process is followed?
Basic process is outlined in the Guidelines for Evaluating COTS at the FDF document

〈 Establish the Objectives of an Evaluation
〈 Establish the Evaluation Type
〈 Determine the Evaluation Method

〈 Basic/Standard Evaluation Methods
〈 Variations on the Standard Evaluation Methods

〈 Establish Evaluation Criteria
〈 Perform Evaluation
〈 Document Results
〈 Benchmarks/Regression Testing/Follow up Evaluations

What have they evaluated?

TK (AGI)
PODS (AGI)
GEODYN(Code 900, GOTS)
OASYS(ISI)
PROBE(BBN)
PATTERN (BBN)
GREAS (AGI)

19 March 13, 1998

What problems have been encountered?
Public awareness of Evaluation Team and services is low

What else we learned about the Evaluation Team?
They are building an “experience base” of COTS evaluations (for multiple products, multiple missions).

Guidelines document:
Domain specific, and not intended to be a general methodology for any COTS s/w evaluation
Working document with lessons learned mixed in with process
Written from a hands-on perspective

What do we suggest?
The COTS Product Evaluation Questions from SEL Packaged-Based System Development document (page 22,
table 3) are valid in the COTS Evaluation Team environment. Recommend that the SEL distribute the modified
COTS Product Evaluation Questions (addition of two questions suggested by Sue Hoge) as a “One Pager” to
technical personnel. Recommend that the Evaluation team use modified COTS Product Evaluation Questions as
part of their process, since these are issues that Sue Hoge typically addresses with Evaluation Team.

FEEDBACK: (none available at this time, email comments to responsible author)

ORIGINAL AUTHORS: Amy Parra and Steve Kraft
RESPONSIBLE AUTHOR: Amy Parra
CONTRIBUTORS: Sue Hoge

REFERENCES/RELEVANT LINKS:
〈 Guidelines for Evaluating COTS at the FDF document
〈 STK Evaluation and Test Results
〈 STK PODS Evaluation Final Report
〈 OASYS Evaluation Report
〈 Interview notes (from two COTS Study interviews with Sue Hoge)

HISTORY: Study Brief published 11/11/97.

20 March 13, 1998

Appendix F - Interview Guides

Interview Guide 1a: Initial Project Interviews

Who: project leads
Subjects covered: background and current status of project, GSS
vs. MATLAB decisions, initial COTS information
Duration: 30-45 minutes

Note: This interview should also include introducing ourselves
and our study to the project leads.
Interviewee:

Interviewer:

Scribe:

Date of interview:

Duration:

Location:

1. What is/are your ROLE(s) on this project (get both
official titles, e.g. user, domain expert, as well as a
decription, e.g. technical vs. administrative, level of
involvement, etc.)?

2. What is the current status of FDSS development for this
project? What are the different applications being developed?
Which have begun, are in progress, or are completed? [gradually
narrow down to attitude applications]

3. For each application, how is it being developed? Using
GSS and UIX? Using some COTS product like MATLAB or STK? Did any
modifications need to be made to the COTS or GOTS products?
Describe the modifications and how they were made.

4. What deployment/development/integration process did you
use to produce these applications? Where did this process come
from? What process documentation or guidance did you use, if
any?

5. Are you aware of the SEL PACKAGED-BASED SYSTEM
DEVELOPMENT PROCESS DOCUMENT?

6. Did you follow the SEL PACKAGED-BASED SYSTEM DEVELOPMENT
PROCESS DOCUMENT?

7. Is there anything that we can do to make this a more
useful, easier-to-follow process?

8. How were the decisions to use these COTS and GOTS

21 March 13, 1998

products made? What were the steps in the decision process?
What were the criteria?

9. Were lessons learned recorded? Where?

10. What types of problems did you run into with the COTS and
GOTS products you chose?

11. What do you think are the biggest risks associated with
these decisions? [try to get a mapping between the criteria
mentioned in #3, and the risks mentioned here] For example:

· unacceptable performance of the application,
· reliability of COTS products,
· delays waiting for something from another group,
· delivered application is unmaintainable,
· required skills not available
· key personnel leaving or being pulled off project at
crucial points
· cultural clashes between personnel from different areas
· turnaround time for error fixes or added functionality

12. Any creative ways to protect against these risks?

13. What data did you collect during the project regarding
COTS?

〈 schedule
〈 cost
〈 errors
〈 standard SEL data

14. What metrics do you see as valuable in managing
COTS-based projects?

15. Was there a purchasing leader for this project, who?
(discuss purchasing decisions, procurement)

16. What other projects do you know are using or planning to
use COTS, GOTS, or other package-based products?

17. Can I be put on your project mailing list and/or could I
have access to your project Web page? What else would help me
keep track of how the project is going? Where can I look at
project documentation?

18. Who are the other core team members and what are their
roles?

22 March 13, 1998

Interview Guide 2: COTS Follow-Up Interviews

Who: COTS-based project leads
Subjects covered: Follow Up COTS information
Duration: 30-45 minutes

Note: This interview should also include re-introducing ourselves
and our study to the project leads.

Interviewee:

Project(s):

Interviewer:

Scribe:

Date of interview:

Duration:

Location:

Date of initial interview:

1. What did you do for the following: (try to capture the major activities, process, products, reviews)

 a. Requirements Analysis
 b. Package Identification
 c. Architecture Definition
 d. Package Selection
 e. System Integration
 f. Test
 g. Maintenance

2. What are the biggest differences between traditional development and Package-Based Development?

3. What are the advantages of Package-Based Development in comparison with traditional development?

4. What are the disadvantages of Package-Based Development in comparison with traditional development?

5 Are you familiar with the SEL Package-Based System Development Process document, Feb. 1996?

6. For an upcoming COTS-based project would you use the SEL Package-Based System Development Process?

 a. If yes, why
 b. If no, why not

7 What parts of the process and/or the document would you improve and how?

23 March 13, 1998

Interview Guide 3: Additional COTS Follow-Up Interviews

Who: COTS-based project leads
Subjects covered: Follow Up COTS information
Duration: 15 minutes

Note: This interview should also include re-introducing ourselves and our study to the project leads. Mention that
this final interview is to verify the data we have collected, and clarify any areas on which we needed more
information. For this interview, meet with the project lead and any other team members that you think would be
appropriate to include, to verify all the data collected on that project.

Interviewee(s):

Project(s):

Interviewer:

Scribe:

Date of interview:

Duration:

Location:

Date of initial interview:

Date of follow- up interview:

Before the interview:
List the CTIFs that are on the Kano Drive for that project
Verify the matrix and supply any reasons why process steps were or were not followed

Bring to the interview:
Matrix for that project
Process Characterization

Actual Interview Questions:

1. Have you completed CTIFs for each COTS or Tool that you are currently using? (definitely for all SEL
projects, ask non-SEL project to also comply)

If not, fill in hard copies of CTIFs during the interview with the project lead.

2. This is the process characterization that we have developed after interviewing projects. How representative is
it of your project? (take notes as to areas that they believe they differ from the process characterization)

3 These are the specific process steps that we noted during interviews. (Show matrix of Steps vs. Interviews
for that project) Allow me to review the data that we have from you as to whether or not you followed a certain
process step. Fill in YES for project completed this step, fill in NO for project did not do this step. Give a simple
reason for why the project completed or did not complete a step.

24 March 13, 1998

References

Condon, S., C. Seaman, V. Basili, S. Kraft, J. Kontio, and Y. Kim. “Evolving the Reuse Process
at the Flight Dynamics Division (FDD) Goddard Space Flight Center.” Proceedings of the
Software Engineering Workshop, NASA/Goddard Space Flight Center, pp. 27-42, December
1996.

Glaser, B.G. and A.L. Strauss. The Discovery of Grounded Theory: Strategies for Qualitative
Research. Aldine Publishing Company, 1967.

SEL Recommended Approach to Software Development, Revision 3. Software Engineering
Laboratory Series, SEL-81-305, June 1992

Selby, Richard, Victor R. Basili, and Terry Baker. “Cleanroom Software Development: An
Empirical Evaluation.” IEEE Transactions on Software Engineering, pp. 1027-1037,
September 1987.

Waligora, S. Packaged-Based System Development Process. Software Engineering Laboratory,
February 1996.

